
作者/Author：

頁數/Page：

出版日期/Publication Date：

To cite this Article, please include the DOI name in your reference data.

引用本篇文獻時，請提供DOI資訊，並透過DOI永久網址取得最正確的書目資訊。

請使用本篇文獻DOI永久網址進行連結:

To link to this Article:

DOI是數位物件識別碼（Digital Object Identifier, DOI）的簡稱，
是這篇文章在網路上的唯一識別碼，
用於永久連結及引用該篇文章。

若想得知更多DOI使用資訊，

請參考 http://doi.airiti.com

http://doi.airiti.com

For more information,

Please see:

Fast-Integer Optimization for WMA Compatible Decoder on
Embedded System without FPU

doi:10.6180/jase.2008.11.4.07

淡江理工學刊, 11(4), 2008

Journal of Applied Science and Engineering, 11(4), 2008

Lain-Jinn Hwang;Chien-Chou Shih;Wei-Chen;I-Ting Kuo

375-386

http://dx.doi.org/10.6180/jase.2008.11.4.07

2008/12

Fast-Integer Optimization for WMA Compatible

Decoder on Embedded System without FPU

Lain-Jinn Hwang1, Chien-Chou Shih2*, Wei-Chen3 and I-Ting Kuo1

1Department of Computer Science and Information Engineering, Tamkang University,

Tamshui, Taiwan 251, R.O.C.
2Department of Information and Communication, Tamkang University,

Tamshui, Taiwan 251, R.O.C.
3Department of Computer Science and Application, Asia University,

Taichung, Taiwan 413, R.O.C.

Abstract

This paper presents a general software optimization technique which enables an embedded

system to play Windows Media Audio (WMA) fluently without the support of floating point unit (FPU).

We employ fixed-point arithmetic operations, instead of floating-point, to optimize the computational

overhead during the audio decoding process. Thus the proposed performance improvements by

programming in C language are useful for the implementation of the real-time WMAcompatible decoder

on ARM920T based embedded system. This work achieved performance increase by reducing the CPU

usage rate from 100% to 45% with great precision on the average around 1-bit error.

Key Words: Ebedded Sstem, Foating Pint, Fxed-point, WMA

1. Introduction

1.1 Motivations

The capability of providing real-time multimedia

player over the Internet is an important future application

for embedded system. However, the main challenge in

such application is the performance of processing com-

plex computations, especially in decoding processes. Se-

veral researches devoted to the development of embedded

applications to enable the multimedia functionalities,

such as MP3 audio or MPEG-2 video decoder [1�5] with

low cost and lightweight devices. Lee et al. have devel-

oped the architecture for MP3 decoding system based on

a processor employing a dual-core (DSP and RISC) ar-

chitecture [6]. However, the computation performances

in decoding and encoding are usually limited in the ar-

chitecture of embedded system. For instance, many fa-

miliar embedded systems were designed without being

equipped with the DSP core. That is, even if the MP3 [7]

and Ogg [8] integer-only decoder (e.g. MAD [9] or

Ogg-tremor [9]) was found, we still could not play

WMA file on embedded systems such as S3C2440,

XSCALE-PXA255 or XSCALE-PXA270, etc. On the

other hand, Windows Media Audio (WMA) is a closed

digital audio format developed by Microsoft [10]. It can

be reverse-engineered and/or re-implemented by FFmpeg

software today. However, to play WMA audio fluently

on the embedded system without a floating-point proces-

sor, the floating-point calculations may be simulated by

software. But such simulator cannot calculate massive

floating-point operations at the same time. Based on the

above consideration, the goal of this paper is to propose

the embedded software optimization technique based on

fast integer methodology, so as to improve the perfor-

mance of WMA compatible decoder on the LINUX-

based embedded system without FPU processor.

1.2 Related Work

MP3 and Ogg are two of the most popular audio

formats, which are developed as integer-only decoders.

Tamkang Journal of Science and Engineering, Vol. 11, No. 4, pp. 375�386 (2008) 375

*Corresponding author. E-mail: ccs@mail.tku.edu.tw

MAD is also a MP3 audio decoder that fully supports

fixed-point computation and is developed by Underbit

Technologies Inc. [11]. Tremor is a fixed-point imple-

mentation of the Ogg Vorbis decoder developed by Xiph

open source community [9]. Thus it can be seen that the

integer-only decoders are widely used and made it easy

to play MP3 and Ogg on the portable player devices.

However, when considering the performance of real-

time playing MP3 audio files on a non-DSP embedded

system, it needs optimization methods to deal with com-

plex computations. Yao et al. [3] have proposed general

hardware & software co-optimization techniques for

embedded systems based on RISC32 processor to opti-

mize MP3 decoder. However, the decoding algorithm of

WMA audio is relatively more complex than MP3. There-

fore, it is more challenging to implement WMA decoder

efficiently on a non-DSP embedded system.

The remainder of this paper is organized as follows.

Section 2 describes the background of WMA decoding

process and section 3 discusses the advantages of fixed-

point. The proposed method of fixed-point optimization

will be presented in section 4, and section 5 is the experi-

mental results. Finally, the conclusions and future re-

search are discussed in section 6.

2. Background of WMA Audio Decoder

In this section, how the FFmpeg WMA decoder

works is discussed [12,13]. Since Microsoft did not re-

lease any details of the WMA decoder specifications, we

have to infer the encoding algorithms according to the

fundamental of audio data compression. Fundamentally,

WMA is a transform coder based on modified discrete

cosine transform (MDCT), somewhat similar to AAC

and Vorbis. The bit stream of WMA is composed of

superframes, each containing 1 or more frames of 2048

samples. If the bit reservoir is not used, a frame is equal

to a super-frame. Each frame contains a number of blo-

cks, which are 64, 128, 256, 512, 1024, or 2048 samples

long after being transformed into the frequency domain

via the MDCT [14]. In the frequency domain, masking

for the transformed samples is determined, and then used

to re-quantize the samples. Finally, the samples are Huff-

man coded. Stereo information is typically mid/side coded.

At low bit rates, line spectral pairs (typically less than 17

kbit/s) and a form of noise coding (typically less than 33

kbit/s) can also be used to improve its quality. Thus, the

audio compression has to pass the data transformation

such as MDCT, for converting sound data from the time

domain to the frequency domain, and then in an effort to

avoid pre-echo artifacts.

Hence, after looking at the source code and studying

how the FFmpeg WMA decoder is implemented, we can

summarize the following WMA decoding phases.

1. Initialization for WMA Decoding

At the beginning, the sine and cosine transform table

are initialized. The related equations are as follow:

(1)

(2)

where i =
0 2 4 5 10

2 6

, .. . , , , , . . . ,

, . . . , ,

and

and

k

m

k

n m

�

� , , . . . ,7 12

�
�
�

The next step is to initialize the exponent table and

the bit reverse table used on FFT [15]. Besides the in-

verse modified discrete cosine transform (IMDCT) in-

itialization, there are still some initializations such as

windowing initialization, noise table initialization and so

on. Figure 1 shows the initialization processes.

The equation (3) and (4) show the exponent tables:

(3)

(4)

where i = 0, 1, …, 2m, and m = 3, 4, …, 9;

where n = 2k, and k = 4, 5, …, 10

The data referenced from bit reverse table is already

an integer number, therefore there is no more conversion

needed. The window function as (5) will multiply the

output of IMDCT and then obtains the frameout.

376 Lain-Jinn Hwang et al.

1

8sin sin 2i

i

n

i

�

� �	
 �
� � �
 �

 �
 �

1

8cos cos 2i

i

n

i

�

� �
	
 �

� � �
 �

 �
 �

exp cos 2i,real

i

i

n
�

� �
� �
 �

 �

exp sin 2i,imaginary

i

i

n
�

� �
� �
 �

 �

(5)

where n = 2j-i, and i = 1, 2, … , 5, and j = 9, 10, 11, and k

= 0, 1, …, 2m, and m = 5, 6, …, 11

Next, there is a random number to initialize the noise

table with the initial value of seed being 1. As shown in

(6), the noise table initialization is noise allocation be-

cause of low-bit rate or when the scale factor band is too

large. The details are omitted here.

noise tablei = seed * norm (6)

where i = 0, 1, … , 8191, and

seed = seed * 314159 + 1, and

where f = 0.02 or 0.04

2. Inverse MDCT (IMDCT) Calculation

IMDCT is the inverse modified discrete cosine trans-

forms [16]. Briefly, it subdivides the data sample into the

finer band, and converts the time domain into frequency

domain in order to reduce data. The difference between

IDCT and IMDCT is that IMDCT includes the opera-

tions of window normalization and anti-aliasing. IMDCT

function can be divided into four steps: pre-rotation, fast

Fourier transform (FFT) [17], Post-rotation and re-order

(Figure 2). The Pre-rotation which is built initially by us-

ing the sine, cosine and bit reverse table structure. In this

part, there is a reverse index table which maps to the num-

ber conversely, and those complex numbers multiply each

other to obtain a new number matrix, and then as the in-

put of FFT.

Figure 3 shows the FFT pre-rotation, and the pre-

rotation formula is as follows:

rptr: rear pointer, fptr: front pointer,

stab: sine table, ctab: cosine table,

Zi, real = rptr * ctabj – fptr * stabj,

Zi, imaginary = rptr * stabj + fptr * ctabj, (7)

where i = bit reverse tablej,

and j = 2k, where k = 2, 3, …, 8.

The FFT calculation will convert wave data to a se-

ries of coefficient, which compresses with Huffman cod-

ing at the end. Post rotation takes the number that is ac-

Fast-Integer Optimization for WMA Compatible Decoder on Embedded System without FPU 377

Figure 1. Initialization flow chart for WMA decoding.

sin (0.5)
2

kwindows k
* n

�� �� �
� 	 �
 �
 �

 � �

1
3

1 31
norm f

� �
� � �
 ��� � Figure 2. IMDCT calculation.

Figure 3. FFT pre-rotation

quired from FFT output to multiply the cosine or sine ta-

ble. Finally, data are built by order.

As shown in Figure 2, a FFT calculation is divided

into three passes. The first pass (pass 0) is implemented

with butterfly operation [18], and which takes two values

that are produced by pre-rotation to calculate. The front

pointer p maps the corresponding address to FFT complex

number structure. The structure is shown in Figure 4.

The second pass is similar to the first pass, as shown

in Figure 5, but it takes two turns of butterfly operation in

the first pass as a unit. The data is selected based on its

index value. That is, when the index value is odd, the

computing coefficient will be inverted.

The final pass is a complex computation because of

the pointer structure. There is a structure to save the tem-

porary complex data by pointers p and q. In the begin-

ning, pointers p and q perform the butterfly operation,

and both pointers move to the next address afterward as

shown in Figure 6. After the butterfly operation, the po-

inter q multiplies the exponent table number built before,

and we obtain the data alias to the temporary address.

The foregoing steps will repeat persistently until all blo-

cks have been computed.

As previous step, the data acquired from FFT mul-

tiplying the sine and cosine tables, which will be re-

corded to a matrix structure at the end of IMDCT algo-

rithm. Besides, in the multiplication instruction cycle

time in 32-bit RISC processor, the integer multiplica-

tion cycle is four per instruction [19], and the floating-

point multiplication cycle is twenty times the clock cy-

cle of the integer multiplication. Hence, to optimize the

decoding performance by fix-point technology is obvi-

ously the best solution.

3. Fixed-Point Arithmetic

3.1 Fixed-Point Number Representation

A fixed-point number representation is a real data

type for a number of fixed digits before and after the de-

cimal point [20]. Fixed-point number representation is

in contrast to the more flexible floating-point number re-

presentation. Most low-cost embedded processors do not

have a floating-point unit. Therefore, the fixed-point num-

bers are useful to represent fractional values in native

two’s complement format if the executing processor has

no floating-point unit (FPU) or if fixed-point is used to

improved performance as well as accuracy. A fixed-point

number may be represented as M.F, where M represents

the magnitude, and F represents the fractional part. Each

fractional bit represents an inverse power of 2. Thus the

first fractional bit is ½, the second is ¼ and so on. For

signed fixed-point numbers in two’s complement format,

the upper bound is given by 2m-1 � 2-f, and the lower

bound is given by �2m-1, where m and f are the number of

bits in M and F respectively. For unsigned values, the

range is 0 to 2m � 2-f.

3.2 Advantages of Fixed-Point Implementation

The codec for the Ogg Vorbis [8] uses fixed-point

arithmetic because many audio decoding hardware de-

vices do not have an FPU, and audio decoding requires a

sufficient amount of performance, that a software imple-

mentation of floating-point on low-speed devices can not

378 Lain-Jinn Hwang et al.

Figure 4. FFT Pass 0.

Figure 5. FFT Pass 1. Figure 6. FFT Pass 2.

produce output in real time. Moreover, since the audio

data is quantized in 16-bit, the truncation problem does

not be encountered. With an integer size, the audio data

can be represented completely. Therefore, the fixed-point

implementation can meet the requirements for bit-ac-

curacy and speed optimization.

According to the discussion in previous sections and

the experiment in [3], IMDCT and sub-band synthesis

routines are characterized by the multiply-accumulation

operations with cosine coefficients during WMA/MP3

audio decoding. Since these routines require heavy com-

putational loads, it is significant to perform modification

by using fast integer optimization.

4. Fast Integer Optimization

On the single core embedded system such as SBC-

2410x, there is no FPU to execute floating-point compu-

tation, and the calculations are usually simulated with in-

teger operations so that the calculation speed is slow.

Thus, playing WMA file on SBC-2410x will overload

with floating point operations. In order to achieve the

goal of this paper, we have proposed a general fast fixed-

point optimum procedure, as shown in Figure 7, by pro-

gramming in C language. Although C language is still

the most popular and flexible for the development of dig-

ital signal processing algorithms as stated in [21], C does

not support fixed-point format. The first phase of the pro-

posed procedure is to define the conversions from float-

ing-point functions into fix-pointed versions (i.e. FF_

CONV, FF_REV and FF_ROUND in Figure 7) as well

as the mathematical operations for fixed-point data type

[21]. As a result, the fixed-point arithmetic operations

are applicable to IMDCT calculation. On the other hand,

we have modified the floating-point function such as

power, square and root for optimizing the accuracy. Fig-

ure 8 shows the defined fixed-point data format, and the

represented range is from 0x80000000 (-65536.000000)

to 0x7FFFFFFF (65535.999969).

4.1 Conversion of Floating-Point Function

As discussed in the previous section (Figure 1), there

are four tables when initializing IMDCT. The modified

conversion functions are applied to the cosine and sine ta-

ble. Likewise, the functions involved with complex multi-

plication are also revised by the fixed-point conversions.

Furthermore, since the FFT algorithm is found in butterfly

operation, which passes will modify the multiplication

functions. Further refinement in other functions will be

made to improve the redundant computation. The conver-

sion function between integer and fixed-point is defined as

formula (8) to improve the conversion time and to en-

hance its accuracy. The formula (9) is a reversion function.

(fixed) FF_CONV(Xfloat)

= (signed integer)(Xfloat * (1 << 15) + 0.5)
(8)

(9)

Though the floating-point have been changed into

fixed-point format, the data type of audio output must be

integer. Hence, a shift function, as shown in formula (10),

is utilized to round up the output for precision.

(integer)FF_ROUND(Xfixed) = Xinteger

= (Xfixed + (1 << (15 - 1))) >> 15 (10)

Fast-Integer Optimization for WMA Compatible Decoder on Embedded System without FPU 379

Figure 7. Overall procedure of fast integer decoding optimi-
zation

(float)
(float) FF_REV(Yfixed) = (float)

1 15

fixedY� �

 ��� �

Figure 8. Fixed-point data format

4.2 Fixed-Point Mathematical Operations

The operations associated with the fixed-point arith-

metic, such as “+,” “-,” “*,” and “/” are also defined in

this section. Four fundamental operations were imple-

mented instead of the original operation and the complex

multiplication, as shown in (11) and (12). The addition

operation (13) and subtraction operation (14) are as usual.

The multiplication (15) truncated is redefined in Figure

9, and the division operation, as shown in (16), can be

done by multiplying the reciprocal with mathematic the-

ory. Assume that X is divided by Y, we shift the fractional

part bits twice with an integer number one as numerator,

and divide by divisor Y to get the reciprocal. Then, we

multiply X by the reciprocal Y.

In IMDCT implementation, there are many complex

multiplications. The complex number includes real num-

ber and imaginary number, and it is represented by two

floating-point numbers. The complex multiplication equ-

ations are as formula (11), and (12).

Zreal = Xreal * Yreal � Ximagin * Yimagin (11)

Zimagin = Xreal * Yimagin + Ximagin * Yreal (12)

Four basic mathematical operations are defined as

the following equations (13) to (16).

FF_ADD(X, Y) = sum(X, Y) = X + Y (13)

FF_SUB(X, Y) = difference(X, Y) = X � Y (14)

FF_MUL_TRUNC(X, Y) = product(X, Y)64bits

= (X32bits* Y32bits) >> 15 (15)

FF_DIV(X, Y) = quotient(X, Y)

= product(X, reciprocal(Y)) (16)

where reciprocal(Y) fixed_64bits =
1 15 2

32

�� (*)

_Y fixed bits

To reduce the CPU consumption and avoid the deg-

radation of the sound quality, both the computational

complexity and the data precision should be optimized.

4.3 Computational Complexity Optimization

1. Integer to fixed-point

Since the operation functions are fixed-point data

format, the integer number is unable to multiply by fixed-

point number directly. That is, when the bit reverse table

is saved by integer, before referring to the value on the ta-

ble, the following equation (17) is used to convert integer

to fixed-point.

(fixed) FF_CONVI(Xinteger) = Xinteger << 15 (17)

2. Fixed-point multiplication

As shown in Figure 10, the implementation of the

fixed-point multiplication function is programmed in

ARM assembly language with instructions “smull”,

“movs” and “adc” to shorten a 64-bit register to a 32-bit

register.

3. Complex multiplication

The complex multiplication is another problem. Ex-

cept for fixed-point multiplication, the complex multipli-

cation also can be optimized in assembly language. Dif-

ferent from fixed-point multiplication, there are addi-

tional instructions, “rsb” and “smlal”, for inversion and

multiplication.

4. The power and square-root functions

The parameter of power function can be simplified ac-

cording to different case. For example, the power function

such as (18) [22] can be converted into fixed-point directly.

380 Lain-Jinn Hwang et al.

Figure 9. Fixed-point Multiplication Truncation. Figure 10. Fixed-point Multiplication.

pow_tablei.float = POW (10, i * 0.05) (18)

where i = 0, 1, …, 127.

Since the range of i is perceivable, the problem of

superfluous computation can be avoided by building a

lookup table. The maximum value produced by this func-

tion is:

max = 10i*0.05 = 106.35 = 2238721.138568

This value is over the range of a fixed-point as we have

defined in Figure 8. Futhermore, there is a floating-point X

involved in the power table and square-root function. To

avoid the overflow problem, a power table can be repre-

sented by a fixed-point number with integer in 22-bit and

fractional in 9-bit. The maximum value of such number will

be 4194303.998047. Accordingly, the fixed-point version

of power table can be used for multiplication (19) and

division (20) with fixed-point X as follows:

(fixed) (power_tablei* Xfixed) >> 9 (19)

where i = 0, 1, …, 127

(20)

where i = 0, 1, …, 127

There are some similar cases with root function or

square function [22], and those functions can be modi-

fied for optimization.

4.4 Precision Optimization

The precision of computations in the study can be

improved by modifying the fixed-point format, and some

precision optimizations are made during the following

steps.

1. Selecting fixed-point format

Since the fixed-point format defined above in Figure

8 is possible to be lower than 15-bit for the fractional bits,

the greatest value could be predicated and the value is not

larger than 216 in WMA decoding. Hence, the floating-

point data can be represented by 15-bit fractional part.

2. Constructing the power table

When building the power table, it can be found that 2

to power of 10 will be always positive in this case as de-

fined in (18). In other words, it is meaningless to keep the

sign bit. Thus, we construct the power table by using a

fixed-point format with 10-bit fractional part instead of

the 9-bit format. As shown in Table 4.1, the additional bit

can be used to represent the fractional part of the fixed-

point number to improve the fractional accuracy.

3. Exchanging the multiplication order

In the WMA decoding function, it is frequently found

that there are multiplications with three floating-point

variables. After converting to fixed-point multiplications,

the product of two variables multiplications in original

order may exceed the represented max value of the fixed-

point format defined in Figure 8. In order to solve such an

overflow problem, the multiplication order should be

changed by firstly selecting two smaller variables in the

three variables multiplications, and then multiplying the

largest variable with the product.

4. Handling the small value

Although floating-point variables can be converted

into fixed-point formats, not all variables can be con-

verted with high accuracy. For instance, by the window

function (5), the value of sine function is known in the

range -1 � sin � 1, therefore we can modify the format in

Figure 8 by increasing the fractional part to 25-bit, de-

creasing the integer-part to 6-bit and keeping the sign bit.

Thus, the range of the modified format will be -64.000000

to 63.999999. Similarly, the small value in noise table (6)

and the largest value in noise table can be found in (21).

noise_tablemax = seedmax * normmax (21)

= 2147483647 * 3.2261 …e-11 = 0.06928 …,

where normmax = 1/2147483648 * 1.73205 … * 0.04

= 3.2261 … e-11, and

seedmax = integermax = 2147483647

The same format can be applied to represent the no-

ise table to improve the precision accordingly. Other small

Fast-Integer Optimization for WMA Compatible Decoder on Embedded System without FPU 381

1 (15*3 9)
(fixed) >>15

power_tablefixed iX

� ��� �

 �� �

Table 4.1. Improvement of fractional accuracy

Unsigned integer Signed integer

Fractional-part bits 10 9
Precision 2

-10
2

-9

values in the decoding function can also be represented

by such format. We have defined the converting function

(22), (23) and multiplication truncation (24) in 25-bit

fractional-part format as follows:

(fixed) FFP_CONV(Xfloat)

= (signed integer)(Xfloat * (1 << 25) + 0.5)
(22)

(fixed) FFP_CONVI(Xinteger) = Xinteger << 25 (23)

FFP_MUL_TRUNC(X, Y)

= product(X, Y)64bits >> 25
(24)

where product(X, Y)64bits = X32bits * Y32bits

5. Reducing the table value

As proposed in section 4.3 that we have constructed

the power table and square root table for optimizing com-

putational complexity. Since the difference of power of

10 values is too large, the power table size should be re-

duced from 196 to 60 items. When the power value is

greater than 1060*0.05, the power value is decomposed to

1060*0.05 * 10x where x can look up in power table. For in-

stance, the calculation 10100*0:05 can be decomposed as

shown in equation (25):

10100*0.05 = 1060*0.05 * 1040*0.05 (25)

The way of modifying the square root table is identi-

cal to power table.

5. Experiment Results and Comparisons

In order to verify the usability of the proposed op-

timizations for WMA compatible decoder on a non-FPU

RISC core, Samsung SBC-2410x is chosen as target em-

bedded testbed in this paper, which equipped with a

32-bit RISC processor [23]. Originally, a UNIX based

WMA decoder (e.g. Mplayer [24], FFmpeg [25]) was

utilized to play WMA audio on the SBC-2410x embed-

ded system. Unfortunately, the experiment almost leaded

to the system crash with the CPU utility rate going over

than 100%. Since SBC-2410x with ARM9 core employs

limited architecture to reach lower cycles per instruction

(CPI), the implementation performance of WMA decod-

ing software, such as Mplayer, is very low. Figure 11

shows the CPU performance after employing the pro-

posed optimization technique in comparison with the ori-

ginal WMA decoder and Modified IMDCT. In fact, when

the WMA audio file is played without optimization, the

CPU usage rate is over 500% and it nearly made the em-

bedded system crash. After modifying the functions in

IMDCT with fixed-point conversions, the CPU utility

rate is reduced to about 150%. Even though the experi-

ment result is remarkable, the goal is still unattained. Sub-

sequently, it can be observed that, by applying the fixed-

point optimizations to modify the window functions, the

382 Lain-Jinn Hwang et al.

Figure 11. CPU Utility Rate Comparison.

CPU utility rate is reduced to about 45%. Finally, the

power and square root function in math.c is replaced by

fixed-point version to refine our effort.

When evaluating the fidelity of a sequence, the dif-

ferences value ei between the original audio values de-

coded by floating-point version and fast integer version

are taken into consideration, as shown in Figure 12. In

general, it is difficult to examine the difference on a term-

by-term basis. Therefore, the average measures are ap-

plied to summarize the information in difference sequ-

ence. Firstly, the absolute difference (abs_diff) between

the value yi decoded by fixed-point and xi by floating-

point with all samples N is calculated by formula (26),

then the absolute difference and mean squared error (MSE)

are calculated by formula (27) and (28) respectively [1].

ei = xi – yi, where i = 1, 2, …, N (26)

(27)

(28)

In the simulation of audio quality, four types of WMA

music are chosen as the simulation cases. Figure 13(a) to

Fast-Integer Optimization for WMA Compatible Decoder on Embedded System without FPU 383

Figure 13. The error analysis for decoding different types of music

Figure 12. Data for Decoding

1Mean abs_diff =

i

N

i

e

N

�
�

1

()2
i

N

i

e

MSE
N

��
�

(d) show the absolute difference of xi and yi with respect

to ten thousand samples in each case. Furthermore, if the

bit-rate and sample-rate of WMA music are lower than

the thresholds, the noise-coding function can be used to

improve the reality of music [25]. Figure 14(a) to (d)

shows another four cases of music sampled with the

noise-coding function. The results of the fixed-point er-

ror simulations associated with the parameters of maxi-

mum abs_diff, mean abs_diff and maximum error bits

are summarized in Table 4.2. The maximum error bits

can be defined by the following formula (29).

Max error bits = the least integer k, such that

2k > Max abs_diff (29)

According to the results in Table 4.2, our proposed

384 Lain-Jinn Hwang et al.

Figure 14. The error analysis for decoding different types of music with noise-coding

Table 4.2. Results of error analyses for fixed-point optimization

Music type Noise coding Samples Max abs_diff Mean abs_diff Max error bits MSE

13(a). Opera No 13942784 1 2.322 * 10
-3

1-bit 2.322 * 10
-3

13(b). Popular No 21508096 1 2.075 * 10
-3

1-bit 2.075 * 10
-3

13(c). Classical No 14417920 4 1.728 * 10
-3

3-bit 2.031 * 10
-3

13(d). Musical No 17715200 1 2.365 * 10
-3

1-bit 2.365 * 10
-3

14(a). Popular Yes 11806720 1 2.178 * 10
-3

1-bit 2.178 * 10
-3

14(b). Opera Yes 14774272 1 2.322 * 10
-3

1-bit 2.322 * 10
-3

14(c). Symphonic Yes 16011264 1 3.890 * 10
-3

1-bit 3.890 * 10
-3

14(d). Rock Yes 28418048 1 7.216 * 10
-3

1-bit 7.216 * 10
-3

optimization for WMA compatible decoders results in an

average error of only approximately 1-bit.

6. Conclusions

In this paper, we have presented embedded software

code optimization methods and optimized the WMA com-

patible decoder. By the proposed fixed-point function trans-

formations, the purpose that enabling embedded system to

play WMA audio files fluently was achieved without an

FPU processor. After the optimization process, the WMA

compatible decoder only required of about 45% CPU utility

rate to decode different types of WMA audio on SBC-

2410x with an average of one error-bit. Furthermore, our

software achievement made it possible to play WMA as

MP3 on several non-DSP embedded systems. It is impor-

tant to note that the proposed fixed-point optimizations can

not only be applied to minimize the computational over-

head for audio decoding, but also are suitable for the video

decoding with low-cost. In other words, the proposed fast

integer optimal approach is helpful to the implementation

of an open-source [26] multimedia decoder on a single

RISC core embedded system in the future.

References

[1] Soderquist, P., Leeser, M. and Rojas, J.-C., “Enabling

MPEG-2 Video Playback in Embedded Systems Th-

rough Improved Data Cache Efficiency,” IEEE Trans.

Multimedia, Vol. 8, pp. 81�89 (2006).

[2] Yongseok Yi and In-Cheol Park, “AFixed-Point MPEG

Audio Processor Operating at Low Frequency,” IEEE

Trans. Consumer Electronics, Vol. 47, pp. 779�786,

(2001).

[3] Yao, Y., Yao, Q., Liu, P. and Xiao, Z., “Embedded Soft-

ware Optimization for MP3 Decoder Implemented on

RISC Core,” IEEE Trans. Consumer Electronics, Vol.

50, pp. 1244�1249 (2004).

[4] You, S. and Hou, Y., “Implementation of IMDCT for

MPEG2/4 AAC on 16-bit Fixed-Point Digital Signal

Processors,” Proc. 2004 IEEE Asia-Pacific Conf. on

Circuits and Systems, Vol. 2, pp. 813�816 (2004).

[5] Wang, H., Xu, W., Dong, X., Li, C. and Yu, W., “Im-

plementation of MPEG-2 AAC on 16-bit Fixed-Point

DSP,” Proc. IEEE Asia-Pacific Conf. on Circuits and

Systems 2006, pp. 1903�1906 (2006).

[6] Lee, K.-H., Lee, K.-S., Hwang, T.-H., Park, Y.-C.,

Youn, D. H., “An Architecture and Implementation of

MPEG Audio Layer III Decoder Using Dual-core DSP,”

IEEE Trans. Consumer Electronics, Vol. 47, pp. 928�

933 (2001).

[7] MP3: MPEG-1 Audio Layer3 Home Page, http://www

.thomson.com

[8] Xiph Ogg Home Page, http://www.xiph.org/ogg

[9] MAD: MPEG Audio Decoder Home Page, http://www

.underbit.com/products/mad

[10] Microsoft Window Media. Home Page, http://www

.microsoft.com

[11] Underbit Technologies Home Page, http://www.underbit

.com

[12] Geiger, R., Herre, J., Koller, J. and Brandenburg, K.,

“INTMDCT - A Link Between Perceptual And Loss-

less Audio Coding,” in Proc. IEEE Int. Conf. Aco-

ustice, Speech, and Signal Processing, Vol. 2, pp.

1813�1816 (2002).

[13] Geiger, R. and Schuller, G. “Integer Low Dealy and

MDCT Filter Banks,” in IEEE Int. Conf. Signal, Sys-

tems and Computers, Vol. 1, pp. 811�815 (2002).

[14] Mu-Huo, C. and Yu-Hsin, H. “Fast IMDCT and MDCT

Algorithms � A Matrix Approach,” IEEE Trans. Aco-

ustics, Signal Processing, Vol. 51, pp. 221�229 (2003).

[15] Brenner, N. and Rader, C. “A New Principle for Fast

Fourier Transformation,” IEEE Acoustics, Speech &

Signal Processing, Vol. 24, pp. 264�266 (1976).

[16] Mu-Huo, C. and Yu-Hsin, H., “Fast IMDCT and MDCT

Algorithms � A Matrix Approach,” IEEE Trans. Sig-

nal Processing, Vol. 51, pp. 221�229 (2003).

[17] Qraintara, S., Chen, Y. and Nguyen, T., “Integer Fast

Fourier Transform,” IEEE Trans. Signal Processing,

Vol. 50, pp. 607�618 (2002).

[18] Yusong, Y., Guangda, S., Chunmei, W. and Qingyun,

S., “Invertible Integer FFT Applied on Lossless Image

Compression,” in IEEE Int. Conf. Robotics, Intelligent

Systems and Signal Processing, Vol. 2, pp. 1219�

1223 (2003).

[19] Princen, J. and Bradley, A., “Analysis/Synthesis Filter

Bank Design Based on Time Domain Aliasing Cancel-

lation,” IEEE Trans. Acoustic, Speech, and Signal Pro-

cessing, Vol. 34, pp. 1153�1161 (1986).

[20] Ki-ll, K., Jiyang, K. and Wonyong, S., “A Floating-

Point to Integer C Conveter with Shift Reduction for

Fixed-Point Digital Signal Processors,” in Proc. IEEE

Fast-Integer Optimization for WMA Compatible Decoder on Embedded System without FPU 385

Int. Conf. Acoustice, Speech, and Signal Processing,

Vol. 4, pp. 2163�2166 (1999).

[21] Kim, S., Kum, K. and Sung, W., “Fixed-Point Optimi-

zation Utility for C and C++ Based Digital Signal Pro-

cessing Programs,” IEEE Trans. Circuits and Systems-

II: Analog and Digital signal Processing, Vol. 45, pp.

1455�1464 (1998).

[22] Qraintara, S. and Krishnan, T., “The Integer MDCT

and Its Application in the MPEG Layer III Audio,” in

Proc. IEEE Int. Symp. Circuits and Systems, Vol. 4, pp.

301�304 (2003).

[23] Samsung Home Page, http://www.samsung.com/tw

[24] C Standard Library Home Page, http://www.utas.edu

.au/infosys/info/documentation/C/CStdLib.html

[25] FFmpeg Multimedia System Home Page, http://ffmpeg

.mplayerhq.hu, (2008).

[26] The Open Source Initiative Home Page, http://www

.opensource.org/docs/osd

Manuscript Received: Dec. 16, 2007

Accepted: Jun. 27, 2008

386 Lain-Jinn Hwang et al.

